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The Brahmaputra River has a dynamic, highly braided channel pattern with frequent
river bar formation, making it morphologically very dynamic, especially during the
monsoon season with high discharge and sediment load. To understand how the river
changes over time, this study focused on two stretches: Palasbari-Gumi and Dibrugarh.
Using 2D morphological models (MIKE-21C), the study aimed to predict erosion
patterns, plan protective measures, and assess morphological changes over short-
term (1 year), medium-term (3 year), and long-term (5 year) periods. Model runs were
conducted to predict design variables across these river reaches, encompassing
different hydrological scenarios and development-planning scenarios. The coarse
sand fraction yielded mean annual sediment load predictions of 257Mt/year for
the 2021 hydrological year and 314Mt/year under bankfull discharge conditions in
the Palasbari-Gumi reach. In the Dibrugarh reach, the corresponding values were
78Mt/year and 100Mt/year. Notably, historical records indicate an annual
sediment load of 400Mt/year in the Brahmaputra River. The model results were
compared to measurements from Acoustic Doppler Current Profilers (ADCP),
showing good accuracy for flow velocities, flood levels, and sediment loads.
Discrepancies in peak model velocities compared to ADCP measurements remain
consistently below 9% across the majority of recorded data points. The predicted flood
levels for the bankfull discharge condition exhibited an outstanding accuracy, reaching
nearly 91% at the Palasbari-Gumi site and a notable 95% at the Dibrugarh site. This
study has presented a valuable methodology for enhancing the strategic planning and
implementation of river training endeavours, particularly within the dynamic and highly
braided channels of rivers such as the Brahmaputra River. The approach leverages
predictive models to predict morphological changes over a 2–3 years timeframe,
contributing to improved river management.
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INTRODUCTION

The Brahmaputra River is India’s largest river and has a braided channel pattern, carrying a large
amount of suspended sediment and facing erosion challenges (Kleinhans, 2010; Pathan and Sil,
2022; Sarker et al., 2023). Floods and breaches of river embankments happen often due to
changes in the river’s shape caused by high upstream flows and monsoon sediment (Pareta,
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2022). Changes in the river’s shape are closely tied to how
much water is flowing (Raff et al., 2023). Increased water flow
leads tomore erosion and sediment movement, raising the risk
of flooding (Prasujya and Nayan, 2021). Over 60% of the people
affected by this live in the Brahmaputra floodplain, and the
consequences include the yearly loss of farmland and
infrastructure like buildings, roads, and mosques (Ashmore,
2013). The riverbanks and nearby land easily erode and
collapse during the wet season, causing seasonal flooding,
loss of farmland, and homes (Métivier et al., 2016). This is
particularly challenging for the people in Assam who are
already dealing with poverty (Borah, 2022). Effective flood
and erosion management can help reduce poverty, and to
do this, it is important to understand the river’s hydrology
and geography (Nicholas, 2013). This understanding relies
on the collection, analysis, and organisation of various types
of data about the river (Sarker, 2022).

A braided river is characterised by a network of multiple,
interweaving channels that divide and rejoin, creating a
distinctive braided appearance (Schuurman and Kleinhans,
2011; Gao et al., 2022; Pareta, 2023). Typically found in
mountainous regions, these rivers transport relatively coarse
and diverse sediments down steep gradients. The dynamic and
intricate nature of braided river systems presents a set of
unresolved questions (Sun et al., 2015; Pradhan et al., 2023).
Natural braided channels result from a combination of factors,
encompassing various flow patterns, properties of bed
materials, intricate interactions between water flow and
sediment transport, potential colonisation by vegetation, and
human activities (Stevens et al., 2022; Nandi et al., 2023;
Talukdar et al., 2023). The morphodynamic processes
involved constitute an exceptionally intricate system, even
without accounting for the influence of biological and
societal factors (Williams et al., 2016b). The Brahmaputra
River features a highly braided channel pattern with dynamic
river bars (chars) that change in size and shape seasonally and
annually (Bristow, 1987; Best et al., 2007). These bedforms,
including large-scale features like bars and islands, and small-
scale features such as ripples and dunes, significantly affect
flow resistance and bed shear stress (Unsworth et al., 2020;
Flemming, 2022; Jan et al., 2022). These bedforms indirectly
influence flood and erosion patterns along the river by
impacting water levels and flow velocity (Cilli et al., 2021).
Regular monitoring of these river features is crucial in order to
understand river characteristics and support mathematical
modelling (Mosselman, 2004; Spasojevic and Holly, 2008;
Williams et al., 2016a; Nandi et al., 2022). Monitoring
involves tracking changes in bar position, height, width, and
length through river surveys and multi-temporal satellite
imagery (Pareta and Pareta, 2021). Satellite data is analysed
using remote sensing software to assess sand bar shape, size,
and movement over time (Prasujya and Nayan, 2021; Sah
et al., 2022).

Previous literature indicates that the recent channel
evolution of the Brahmaputra River is primarily influenced by
regional tectonics and basin aggradation (Goswami, 1985;
Lahiri and Sinha, 2012; Sarker et al., 2014; Czuba and

Foufoula-Georgiou, 2015; Basumatary et al., 2019; Li et al.,
2020; Cilli et al., 2021; Gao et al., 2022; Nandi et al., 2022; Saikia
and Laskar, 2022; Nandi et al., 2023; Pradhan et al., 2023).
These factors dictate the residence time of the river or its
branches at different locations, with major anabranches and
their angles of approach to the banks determining the erosional
magnitude of adjacent areas (Coleman, 1969; Basumatary
et al., 2019). The variability in erosional activities along
different sections indicates the river’s preferred erosional
sites. The morphodynamics of extensive braided river
systems, like the Brahmaputra, contribute to high rates of
bank erosion, an unstable braided belt, and fluctuating
channel courses (Dutta et al., 2010). The considerable
variability in discharge and sediment load leads to extensive
erosion-deposition processes and complex bar dynamics (Sah
et al., 2022), requiring exploration of spatio-temporal variability
in bar dynamics to understand braided hydrodynamics (Nandi
et al., 2022). Comprehensive data collection, both vertically and
horizontally, is essential for understanding morphological
changes in a braided river like the Brahmaputra (Sarker and
Thorne, 2006; Li et al., 2020; Saikia and Laskar, 2022). Landsat
satellite data, a valuable tool for tracking horizontal river
alterations, is crucial for detecting dynamic changes and
critical areas along the river (De Vriend, 2001; Tamiminia
et al., 2020; Hemati et al., 2021). The accessibility of such
data has been significantly enhanced with the introduction of
Google Earth Engine (GEE), facilitating the operational use of
remote sensing data (Gorelick et al., 2017; Mutanga and
Kumar, 2019; Gomes et al., 2020; Moharrami et al., 2021;
Johary et al., 2023). Gao et al. (2022) utilised GEE resources
for accessing specific Landsat images to characterise the
functional behaviour of the Upper Lancang River in the
Qinghai-Tibet Plateau, China (>3,400 m elevation). Similarly,
Lu et al. (2022) examined altered water and sediment flux due
to glacier melting in the source region of the Yangtze River
using Unmanned Aerial Vehicle (UAV) surveys and DEM data.
Additionally, GIS systems like ArcGIS or QGIS are employed for
the ongoing analysis of the river’s planform development
(Czuba and Foufoula-Georgiou, 2015; Pareta and Pareta,
2021; Lawal et al., 2022; Velastegui-Montoya et al., 2023; Wu
et al., 2023).

The vertical changes in the Brahmaputra River are
monitored through river cross section surveys, conducted
using ADCP (Acoustic Doppler Current Profiling) in water-
covered areas or conventional cross section surveys. In dry
sections of the river, surveys are performed using traditional
topographical methods or airborne LiDAR (Light Detection and
Ranging) surveys (Leyland, et al., 2017; Hu et al., 2023). Besides
topographic and bathymetric data, acquiring data on
discharge, sediment load (both bed load and suspended
load), and the grain size distribution of bed and bank
materials is crucial (Karmaker and Dutta, 2016; Ashley et al.,
2020). The mentioned data types are essential for
mathematical modelling tools like MIKE 21C, Delft2D-Rivers,
CCHE2D, TELEMAC, etc., enabling numerical predictions of
short-term and medium-term morphological behaviour
(Takebayashi and Okabe, 2009; Khanh et al., 2023).
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Numerical simulations of fluvial morphodynamics are used by
scientists and river managers to understand and predict the
interactions between flow, sediment transport, and river form.
Mathematical modelling supports bank erosion prediction,
hydraulic and morphological development assessment, and
the evaluation of riverbank protection and training works, both
upstream and downstream (DHI, 2017; Pareta, 2020; van der
Wal, 2020; Saadona et al., 2021; Das et al., 2022).

A number of articles have reviewed existing approaches to
numerical modelling in fluvial geomorphology, and erosion
prediction (Murray and Paola, 1994; Webb, 1995; De Vriend,
2001; Malmaeus and Hassan, 2002; Olsen, 2003; Mosselman,
2004; Jang and Shimizu, 2005; Doeschl et al., 2006; Coulthard
et al., 2007; Jang and Shimizu, 2007; Spasojevic and Holly,
2008; Thomas and Chang, 2008; Takebayashi and Okabe, 2009;
Tucker and Bradley, 2010; Schuurman and Kleinhans, 2011;
Van De Wiel et al., 2011; Mosselman, 2012; Lajeunesse et al.,
2013; Liedermann et al., 2013; Nicholas, 2013; Pirot et al., 2014;
Sun et al., 2015; Williams et al., 2016b; Yang et al., 2017;
Javernick et al., 2018; Kasprak et al., 2019; Weisscher et al.,
2020; Saadona et al., 2021; Bürgler et al., 2022; Stecca and
Hicks, 2022; Wang et al., 2022; Han et al., 2023; Khanh et al.,
2023; Pareta and Pareta, 2023; Stecca et al., 2023). In recent
years, there has been a growing adoption of physics-based
numerical models for modelling fluvial processes (Webb, 1995;
De Vriend, 2001; Jang and Shimizu, 2005; Tucker and Bradley,
2010; Sun et al., 2015; Weisscher et al., 2020; Khanh et al.,
2023). However, limited efforts have been dedicated to
modelling the evolution of braided rivers with their dynamic
planform characteristics, and erosion prediction.

Of particular note, braided river modelling has experienced
an innovation from simplified approaches to physics-based
models (Murray and Paola, 1994; Jang and Shimizu, 2005).
Webb, (1995) introduced a linear model to investigate
migrating alternate bars and random walk models for
predicting braided channel system geometry. Predicting
long-term morphological changes in rivers, estuaries, coasts,
and shelf seas is challenging due to unpredictable weather and
non-linear morphodynamic processes, necessitating predictive
models at the relevant scale (De Vriend, 2001). The model in
question employs a convection-diffusion equation to calculate
bed load and suspended sediment transport, adapting the grid
for channel changes and validating against Colorado State
University’s physical model studies (Olsen, 2003). However,
cellular models, as noted by Doeschl et al. (2006), are limited in
studying interactions between flow, sediment, and bed
deformation, impacting their ability to simulate flow routines
in natural braided rivers. Jang and Shimizu. (2007) addressed
this limitation by employing a physics-based numerical model
to replicate features of braided rivers with erodible beds and
banksmade fromwell-sorted sandymaterials. While Coulthard
et al. (2007) highlighted the prevalence of cellular models,
which lack water depth, flow velocity, or flow momentum
calculations, Thomas and Chang. (2008) and Spasojevic and
Holly. (2008) provided comprehensive descriptions of one-
dimensional (1D), two-dimensional (2D), and three-
dimensional (3D) approaches to morphodynamic modelling.

Takebayashi and Okabe. (2009) developed a numerical model
exploring the impacts of vegetation and unsteady flow on
braided stream dynamics. Tucker and Bradley. (2010)
modelled the morphological evolution of 2D scarps using
moving grains, while others, such as Malmaeus and Hassan.
(2002) and Lajeunesse et al. (2013), employed grains to model
bedload transport. Schuurman and Kleinhans. (2011) applied a
two-dimensional morphological model to generate braided bar
patterns in an idealised channel, using Engelund-Hansen’s total
load formula for sediment load calculations. Van De Wiel et al.
(2011) discussed the application of models to understand and
predict evolution in response to environmental change, and
Mosselman. (2012) provided a review within the context of
gravel-bed rivers.

Nicholas. (2013) introduced a morphodynamic model
incorporating two grain size fractions (sand and silt) to
simulate the co-evolution of rivers and floodplains within a
comprehensive framework for modelling both meandering and
braided rivers. Liedermann et al. (2013) employed a fully 3D
model to calculate sediment particle movement in the Danube
River. Pirot et al. (2014) proposed a novel method for
generating successive topographies in braided river
systems, influencing river-aquifer interactions, and impacting
ecosystems, flood risk, and water management. Williams et al.
(2016b) suggested that physics-based models offer more
detailed process information, enhancing the understanding
of natural braided rivers by better representing hydraulic and
morphodynamic processes. They emphasized that a 2D
physics-based model holds the greatest potential for
simulating braided river morphodynamics at temporal and
spatial scales relevant to investigations related to river
mechanisms and management. Yang et al. (2017)
developed a 2D physics-based model to simulate braiding
processes and morphodynamic changes in rivers,
incorporating hydrodynamic and sediment transport
principles, bed morphology deformation, and a TVD (Total
Variation Diminishing) scheme for predicting trans-critical
flows and bed morphology deformation. Javernick et al.
(2018) examined Delft3D, a 2D model, using observed bed
load transport data from braided river flume experiments,
focusing on shear stress calculations to predict sediment
fluxes for morphological simulations in a fixed bed model
configuration. Kasprak et al. (2019) indicated that numerical
models predict channel evolution, overcoming challenges in
field observation timescales, and the model successfully
simulated 80% of observed braiding mechanisms through
parameterised bed processes. Weisscher et al. (2020)
investigated channel evolution, highlighting that numerical
models face limitations in oversimplification or
computational constraints, hindering their application scope.
Stecca and Hicks. (2022) studied braiding channel dynamics
through numerical simulations, observing hints of ergodic
behaviour, with time statistics converging to ensemble
statistics across different runs. Spasojevic and Holly.
(2008), and Bürgler et al. (2022) demonstrated that physics-
based numerical models, ranging from one-dimensional (1D)
to three-dimensional (3D), can nearly completely represent the
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complicated processes in natural braided rivers. A 1D model,
as suggested by Weisscher et al. (2020), cannot adequately
simulate the lateral flow necessary for braiding, whereas a two-
dimensional (2D) model can make spatially explicit predictions
of flow depth, velocity, and bed shear stress, incorporating the
influence of topography in steering flow and allowing lateral
variation in water surface elevation. Wang et al. (2022)
proposed a one-dimensional model simulating bed and bank
changes in the Lower Yellow River’s braided reach during flood
seasons, integrating modules for flow-sediment transport, bed
deformation, and bank erosion/accretion. Han et al. (2023)
successfully simulated the large-scale braided system
evolution in the middle Yarlung Tsangpo River, China, using
a physics-based model with D50 = 0.23mm, capturing both
microscopic and macroscopic changes, including the
formation of a high-intensity braided reach from an initial
lateral flatbed under lateral valley confinement. Khanh et al.
(2023) used the Mike 21FM hydrodynamic model to assess
sediment transport changes in the Tien River, crucial for
understanding riverbed evolution in the Cao Lanh district.

The specific objectives of this paper are: (i) to undertake
short to medium-term prediction of bank erosion, specifically
to facilitate strategic planning of river training methodologies,

(ii) to assess the hydraulic and morphological transformations
transpiring within the Palasbari and Gumi reach, regions
severely influenced by erosion along the southern bank, and
(iii) to evaluate the ramifications of extant river training
interventions on the immediate environs, encompassing
both upstream and downstream zones.

ABOUT THE STUDY AREAS

The development of the morphological model for erosion
prediction involves the selection of two highly active and
morpho-dynamically significant reaches along the
Brahmaputra River. These reaches are specifically located in
Palasbari-Gumi, situated in the middle-western region of
Assam, and Dibrugarh, located in the northeastern part of
Assam. This choice is based on the pronounced erosion
dynamics of these areas, which are crucial for this research.
The Palasbari-Gumi reach extends from latitude 26.099°N to
26.2636°N, and longitude 91.1364°E to 91.5868°E, while the
Dibrugarh reach extends from latitude 27.3748°N to 27.6640°N,
and longitude 94.7464°E to 95.1605° E (Figure 1).
Administratively, the Palasbari-Gumi reach spans across

FIGURE 1 | Location map of study areas.
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four districts, namely, Barpeta, Nalbari, Kamrup, and Dispur. In
contrast, the Dibrugarh reach is situated solely within the
Dibrugarh district of Assam. In terms of topography, these
regions exhibit generally flat but uneven terrain. Additionally,
these areas belong to an agroclimatic sub-zone, which is
distinguished by a prevalent tropical humid climate. The
regional climate exhibits distinct seasons, including summer
(Mar-May), monsoon (Jun-Sep), and cool winter (Oct-Feb).
Temperature ranges between 12°C and 33°C, with maximum
temperatures peaking in August. Rainfall commences in April,
continues through August, and is characterised by an annual
range of 1,500 mm–2,700 mm.

STUDY MATERIAL AND DATA COLLECTION

The data have been collected from secondary as well as
primary sources for the Palasbari-Gumi reach to fulfil the
objectives of the study. The secondary datasets included
rainfall data from fixed stations, river cross-section
measurements, river water level measurements, river
discharge data, bathymetry data, topography data, grain size
characteristics data, ADCP (Acoustic Doppler Current Profiler)
velocity measurements, available high-resolution DEM (digital
elevation model), and satellite images. Primary datasets such
as topography and bathymetry data were also used to
complement the analysis and modelling work.

Shuttle Radar Topography Mission (SRTM) digital elevation
model (DEM) data, featuring a spatial resolution of 30 m, was
obtained from1 for the year 2014 to cover the study areas. This
dataset played a crucial role in the validation of cross-sectional
topographic data and the comprehensive analysis of the
topographical characteristics within the designated study.

The existing cross-sectional data was sourced from the
Water Resource Department of Assam, accessible at.2

Subsequently, these cross-sectional datasets were
augmented by incorporating the available bathymetric data,
enhancing the overall dataset for the study areas.

Observed water level data spanning from 2018 to 2022were
sourced from the Central Water Commission (CWC) and
accessed through.3 The accuracy and reliability of these
water level measurements were cross-validated using
precipitation data obtained from TRMM (Tropical Rainfall
Measuring Mission) and GPM (Global Precipitation
Measurement) through numerical simulations. This process
ensured the quality and consistency of the water level records
in the study.

Precipitation data spanning from 2000 to 2022 were
sourced from the Tropical Rainfall Measuring Mission
(TRMM), specifically the TMPA (TRMM Multi-satellite
Precipitation Analysis) 3B42 v7 dataset, known for its fine
0.25° × 0.25° spatial resolution. This valuable meteorological

datawas acquired through the National Aeronautics and Space
Administration (NASA) and can be accessed at.4

Rainfall data from 2014 to 2022, featuring a spatial
resolution of 0.1° × 0.1°, was sourced from the Global
Precipitation Measurement (GPM) project. This dataset,
renowned for its fine spatial granularity, was obtained
through the National Aeronautics and Space Administration
(NASA) and can be accessed at.4

Rainfall data spanning from 1980 to 2022, characterised by
a spatial resolution of 0.25° × 0.25°, was procured from the
Global Forecast System (GFS). This extensive dataset was
acquired through the National Oceanic and Atmospheric
Administration (NOAA) and is accessible at.5

Discharge data spanning from 2017 to 2022 was sourced
from the Global Flood Monitoring System (GFMS), accessible
at.6 This dataset, which encompasses both water level and
discharge information, served as a foundational component
for defining the hydrological boundaries within the 2D model.

Bathymetry, grain size characteristics, and ADCP velocity
measurements data for the year 2018 were acquired from a
report authored by the Institutional Strengthening Component
(ISC) of the Flood and River Erosion Management Agency of
Assam (FREMAA), which operates under the Government of
Assam. This dataset was accessed through the official
website of FREMAA at.7

Most recently, topography and bathymetry data were
gathered through a primary survey conducted in the year 2022.

METHODOLOGY

Model Framework
The 2D model of the Palasbari-Gumi reach extends over a
distance of 57 km, encompassing the entire width of the
Brahmaputra River. It commences at the Saraighat Bridge in
Guwahati and concludes at Bahari in the north bank, with the
south bank extending to Sontoli in the Kamrup district. Notably,
the width of the Brahmaputra River at Saraighat Bridge is a
mere 1.49 km, while approximately 37 km downstream, in the
vicinity of Palasbari-Gumi, the river widens significantly to
18.83 km, marking one of the most substantial variations in
river width globally (Pareta, 2021). Similarly, the 2D model for
the Dibrugarh reach spans a length of 43 km, covering the
complete breadth of the Brahmaputra River. This modelling
domain encompasses the stretch from the Bogibeel Bridge
near Dibrugarh to a point 43 km upstream at Rohomaria.

Set-Up Computational Grid
The 2D model for the Palasbari-Gumi reach spans a length of
57 km and was constructed using 148,200 computational cells
within a curvilinear orthogonal grid system, employing MIKE

1https://earthexplorer.usgs.gov/
2https://waterresources.assam.gov.in/
3https://ffs.tamcnhp.com/

4http://trmm.gsfc.nasa.gov/
5http://www.nco.ncep.noaa.gov/pmb/products/gfs/
6http://flood.umd.edu/
7https://fremaa.assam.gov.in/
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21C modelling technology. This model comprehensively
covers the full width of the Brahmaputra River, which spans
approximately 20 km. Along the 57 km length of the river, there
are 570 computational cells, while 260 cells are arranged
across the river’s width (Figure 2A).

Conversely, the 2D model for the Dibrugarh reach is based
on 21,660 cells within a curvilinear orthogonal grid system
using MIKE21C. This grid covers a 43 km stretch of the river
and encompasses the complete width of the Brahmaputra
River. The cell size varies, with the maximum cell dimension
along the river’s length at 571 m and a minimum of 315 m. The
resolution across the width varies between 65 and 190 m
(Figure 2B). The finer resolution across the width is of
paramount importance, especially in evaluating phenomena
such as bend scour, obstruction scour, and bank erosion. Given
the river’s width and the presence of anabranches, this
resolution is deemed sufficient to simulate bend scour,
various forms of scours, and bank erosion. The
computational resolution for both models is considered
satisfactory for the intended purposes.

Bathymetry Generation
The bathymetry data for the study areas encompassed by the
2D model have been sourced from available data repositories
described in Section Study Material and Data Collection. These
data sources primarily cover the navigational sections of the
main channels and certain deep anabranches. Additionally,

data from the Water Resource Department’s (WRD) cross-
sections within the Palasbari-Gumi reach (CS = 22 to CS =
15) and the Dibrugarh reach (CS = 57 to CS = 62) are at our
disposal. Utilising these limited but valuable resources, the
bathymetries have been generated for both reaches, visually
represented in Figure 3.

It is important to note that the cross-sections were primarily
employed for estimating the formation levels of relatively
stable and permanent islands. This was undertaken with the
assumption that changes in the formation level of these stable
islands have been minimal, particularly over recent years. It is
imperative to emphasise that themodel’s bathymetry has been
constructed with the constraints of very limited available
bathymetric data. Nonetheless, the present models have
demonstrated a high degree of efficacy in describing the
hydraulics and morphological developments within the study
area. They have successfully generated essential hydraulic and
morphological design parameters, which are pivotal for the
planning and design of river training works. Such works
encompass a range of activities including revetment work,
groynes, dikes, and dredging for navigation purposes,
among others.

Boundary Conditions
Hydrological boundaries for the 2D model simulation were
established using discharge and water level data. Discharge
data sourced (described in Section Study Material and Data

FIGURE 2 | Model grid for the model domain of the Brahmaputra River at (A) Palasbari-Gumi reach, and (B) Dibrugarh reach.
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Collection) from the Pandu gauging station were employed as
the inflow data at the upstream boundary of the Palasbari-
Gumi reach model, positioned approximately 3 km
downstream from the Pandu location. On the other hand,
water level data was implemented at the downstream
boundary, situated about 54 km downstream from Pandu.
To ensure the accuracy and reliability of the model, a
calibration process was executed using data from the
2021 hydrological year, as illustrated in Figure 4A. Following

calibration, the model’s performance was further validated
using data from June 2022. The available data
encompassed discharge information from the Pandu
gauging station for the entire 2021 hydrological year and
water level data at the downstream boundary of the 2D
model. Discharge values were derived from a rating curve
that correlated water levels at the Pandu location.

It is important to note that discharge data for Dibrugarh
were initially unavailable. To address this gap, discharge data

FIGURE 3 | Bathymetry for model domains for (A) Palasbari-Gumi reach, and (B) Dibrugarh reach.

FIGURE 4 | Inflow discharges at the upstream boundary and water level at the downstream boundary of the 2D Model, (A) Palasbari-Gumi
reach, and (B) Dibrugarh reach.
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for Dibrugarh were temporarily derived from the data collected
at the Pandu gauging station. Subsequently, the model was
refined with observed discharge data obtained from the WRD
department of Assam. Furthermore, water level data for the
year 2021 at the Bogibeel station were successfully collected,
as indicated in Figure 4B. The boundary of themodel domain is
positioned approximately 7 km upstream from the Bogibeel
Bridge. To support the modelling process, water level data
from the Bogibeel location were extended, taking into
consideration the changes in the bed level slope. Similar to
the Palasbari-Gumi reach, model calibration was meticulously
conducted using data from the 2021 hydrological year.

Grain Size Characteristics
Grain size data, collected in 2018 from available sources as
described in Section Study Material and Data Collection, were
utilised to characterise grain sizes, gradation, and grain
sorting processes relevant to morphological studies,
including roughness, sediment transport, and
morphological prediction. A total of 20 samples were
collected at eight cross-sections within the 57 km reach of
the Palasbari-Gumi 2D model domain, while 16 samples were
gathered at six cross-sections within the 43 km reach of the
Dibrugarh 2D model domain. At each cross-section, three
samples were collected from the riverbed: one from the
middle and two from either side of the cross-section for
both reaches. The Van Veen Grab sampler was used for
sample collection. The grain size data, including the

median grain size (D50), for both reaches are presented in
Table 1. The grain size data are consistent with citation grain
sizes for the Brahmaputra River found in the literature.
Average grain size distribution curves of DED (directed
energy deposition) material for both reaches are shown
in Figure 5.

Moreover, the grain sorting parameter (σ) indicates well-
sorted sediment in the riverbed, where a sorting parameter of
less than 1.6 signifies well-sorted sediment (Schumm and
Parker, 1973; ASCE Manual of Practice, 2006), making
sediment transport formulas applicable for uniform
sediment (with median grain size, D50) useable in sediment
transport and morphological prediction. This characterisation
enhances the precision of sediment transport and
morphological predictions in the study.

Scenarios for Morphological Model
The morphological model developed in this study employs the
advanced MIKE-21C technology to predict erosion patterns
and plan protective measures within the Palasbari-Gumi reach,
and Dibrugarh reach of the Brahmaputra River. This model is
underpinned by a comprehensive dataset, including
topographical information, discharge data, and sediment
characteristics, enabling the simulation of morphological
alterations under a spectrum of hydrological scenarios. The
results derived from this model provide invaluable insights into
erosion prediction and river management strategies within this
dynamic and ever-changing environment. This approach

TABLE 1 | Bed material grain size distribution at Palasbari-Gumi and Dibrugarh reach of the Brahmaputra River (2018).

Grain class Palasbari-Gumi reach Dibrugarh reach Brahmaputra River at Assam
(Goswami, 1985)

Brahmaputra River at Jamuguri
(Karmakar et al., 2010)

D16 (mm) 0.15 0.16
D50 (mm) 0.24 0.26 0.25 to 0.16 0.16
D65 (mm) 0.29 0.32
D84 (mm) 0.44 0.47
σ (Grain Sorting Parameter),
(D84/D50)

0.5
1.65 1.68

FIGURE 5 | Average grain size distribution curves of DED material for (A) Palasbari-Gumi reach, and (B) Dibrugarh reach.
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enhances our understanding of the complex interactions in the
Palasbari-Gumi and Dibrugarh reach and aids in the
development of effective measures to mitigate erosion and
its associated impacts.

Hydrological Scenarios
The model underwent a series of runs to explore various
hydrological scenarios for predicting design parameters
along both the Palasbari-Gumi and Dibrugarh reaches of the
Brahmaputra River. These simulations were primarily focused
on the monsoon period when the morphological dynamics are
most pronounced. The simulation period extended from May
to October and encompassed three key scenarios: (a)
conditions approximating a bankfull discharge (equivalent to
a 1 in 2 year return period); (b) conditions representing a 1 in
100 year discharge, with the simulation period also spanning
from May to October; and (c) utilisation of actual hydrological
discharge data from 2021.

To ensure the accuracy of the simulations, the discharge
and water level hydrographs from 2021, which were used for
model calibration, were adjusted to align with the peak
magnitudes observed during 1 in 2 year and 1 in 100 year
flood events. The model runs were executed under fixed bed
conditions and relied on topography data from June 2022 for
the overall model area, with bathymetry data from August
2022 being applied specifically to the Palasbari-Gumi and
Dibrugarh reaches. This comprehensive approach to
modelling allowed for a detailed exploration of
morphological changes in these critical areas during the
monsoon season.

Development and Planning Scenarios
The morphological prediction process involved the strategic
use of specific scenarios to comprehensively assess the
behaviour of the Palasbari-Gumi and Dibrugarh reaches in
the Brahmaputra River. These scenarios were as follows: (a)
in the first scenario, the assumption was made that the entire
south bank within the 2D model domain of both Palasbari-
Gumi and Dibrugarh reaches was non-erodible. This
essentially mimicked a scenario where the riverbanks were
trained or fixed, allowing for an evaluation of scour
development within the river; (b) the second scenario
introduced the incorporation of river training works into the
model at the Palasbari-Gumi and Dibrugarh reaches. This
addition aimed to assess the impact of these river training
measures on bank erosion in the unprotected south bank
reaches; and (c) in the third scenario, the entire Palasbari
bend was considered non-erodible, with a focus on
understanding its impact on the unprotected south bank
reach. These scenarios served as valuable tools in
unravelling the complexities of erosion dynamics and the
requirements for protective measures in these critical
areas. By systematically exploring these scenarios, the
study provided insights into how different factors and
interventions influenced the morphological evolution of the
river reaches, ultimately contributing to a better
understanding of river management in these regions.

RESULT

Model Calibration and Validation
Hydrodynamic variables, with a primary focus on ADCP
velocity measurements, played a pivotal role in the
calibration process of the model. This calibration was of
utmost importance as it served to establish the model’s
reliability in predicting sediment load and, consequently,
morphological changes including scour and erosion. To fine-
tune the model’s performance, adjustments were made to
Chezy’s flow friction factor (C) (Manning, 1895; Chow, 1973)
through iterative model runs, aligning the model-generated
variables, such as velocity and sediment load, with
measured data. The MIKE 21C modelling software provided
a robust framework for the incorporation of spatial variations
in Chezy’s C. This feature allowed for the accounting
of differing roughness conditions within the river, particularly
between shallow islands and deep channels. Bedforms
like dunes and ripples, known to impact roughness, were
also taken into consideration. The software’s capabilities
extended to quantifying flow friction due to the dynamic
evolution of bars and bedforms within the complex braided
river system.

Several researchers, including van Rijn. (1984), have
proposed empirical equations to evaluate flow friction
associated with skin roughness (arising from sediment
grains) and form roughness (linked to ripples and dunes).
Applying van Rijn’s formula to the Brahmaputra River, hand
calculations yielded Chezy’s C values ranging from 55 to 60 for
deep channels, 40 to 45 for channels with more average
depths, and 25 to 30 for shallow islands for both reaches.
Notably, the calibrated Chezy’s C values in the 2D model
demonstrated a commendable alignment with ADCP
velocities and sediment load data. It is worth highlighting
that these calibrated C values fell within the range derived
from the hand calculations based on van Rijn’s formula,
underlining the model’s fidelity to real-world
observations and data.

ADCP Velocity Comparison
The 2D model demonstrated a high degree of accuracy in
predicting velocities within the primary channels of the
Palasbari-Gumi and Dibrugarh reaches. Calibration
procedures were meticulously carried out using data from
the 2021 hydrological year, and the model’s performance
was rigorously validated against flow data from June 2022.
In both the calibrated and validated results, there was a robust
concurrence between the model-generated velocities and the
actual measurements obtained through ADCP. Specifically,
when comparing ADCP-measured velocities from July
2021 in the primary channel of Palasbari, it was observed
that the peak model velocity exhibited only a minimal
deviation of approximately 8.9% from the measured values.
Similarly, in the primary channel of Dibrugarh, the peak model
velocity showed a slight deviation of around 5.3% from the
measured values. This level of agreement is considered highly
satisfactory, particularly in the context of sediment load
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prediction, indicating the model’s reliability and suitability for
its intended purposes.

The author conducted a comprehensive calibration and
validation process for flow parameters across various cross-
sections. However, for the sake of brevity, only a representative
cross-section for both the Palasbari-Gumi and Dibrugarh
reaches is presented in Figure 6. Validation against ADCP
measurements conducted in June 2022 further substantiated
the model’s proficiency in predicting velocity distribution. The
comparison between the model-predicted average velocities
and the actual measurements revealed a high degree of
agreement across all cross-sections within both the

Palasbari-Gumi and Dibrugarh reaches. The disparities
observed, typically falling below 10%, were deemed minor and
within an acceptable margin of error. This validation process
serves as a robust confirmation of the model’s efficacy in
replicating real-world velocity patterns in the study area.

Sediment Load Comparison
The model demonstrated an effective capacity to predict
sediment load under the 2021 hydrological conditions and the
bankfull discharge scenario, exhibiting a close alignment with
historical measurements for both the Palasbari-Gumi and
Dibrugarh reaches (Table 2). The Engelund and Hansen. (1967)

FIGURE 6 | Comparison of 2D model velocity with ADCP measurement of July 2021 (result compared at CS:21 (near Pandu in Palasbari-
Gumi reach), and CS:60 (near Dibrugarh town in Dibrugarh reach) in the main navigable channel.

TABLE 2 | Sediment load predicted by 2D MIKE 21C model at Palasbari-Gumi, and Dibrugarh reach of the Brahmaputra River.

Predicted and observed Peak discharge
(m3/s)

Mean annual predicted
load

(Mt/Year)

Remarks

MIKE 21C model (This study at Palasbari-Gumi
reach)

2021 Hydrology 257 Bed + suspended load, without wash load. Grain size is
0.16 mmPeak Discharge:

34,333
MIKE 21C model (This study at Palasbari-Gumi
reach)

Bankfull Hydrology 314
Peak Discharge:
42,500

MIKE 21C model (This study at Dibrugarh reach) 2021 Hydrology 78 Bed + suspended load, with-out wash load
Peak Discharge:
21,904

MIKE 21C model (This study at Dibrugarh reach) Bankfull Hydrology 100
Peak Discharge:
27,114

Observed at Pandu (Singh et al., 2004) Year: 1955–1979 400 Not known whether was load inclusive
Observed at Bahadurabad (FAP24, 1996) 590 Inclusive of wash

202 Without wash load
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total transport load formula was applied in the model, utilising a
median grain size (D50) of 0.16mm to represent fine sand. When
the model’s sediment load predictions were compared to
observed loads at Bahadurabad on the Brahmaputra River, a
high level of agreement was observed in the Palasbari-Gumi
reach. However, it is worth noting that the observed load at
Pandu appeared to exceed the model’s prediction. This
disparity could potentially be attributed to the inclusion of
wash load, although this was not explicitly stated in the
reference. Typically, wash load constitutes a substantial
portion, around 40%–50%, of the total load (as noted in FAP24,

1996; Coleman, 1969). Assuming a consistent ratio and
considering a coarse sediment load of approximately 200Mt/
year at Bahadurabad, it is plausible that thePandu loadmentioned
in the literature appears elevated if it contains only the coarse
sediment fraction. Therefore, in consideration of this fractional
ratio, the 2Dmodel’s load prediction also aligns satisfactorily with
the measurement at Pandu within the Palasbari-Gumi reach.

The model’s prediction for the total load at Dibrugarh under
the 2021 hydrological conditions is approximately 78Mt/year.
This particular hydrology represents a low-magnitude flood
event, and in comparison to the bankfull discharge condition,

FIGURE 7 | MIKE21C model predicted sediment load and hydrograph of discharge of different simulation scenarios at (A) Palasbari-Gumi
reach, and (B) Dibrugarh reach of Brahmaputra River.
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it may slightly lag in magnitude. When examining the measured
and model-predicted load at Pandu, the predicted load at
Dibrugarh appears quite plausible. Pandu discharge is
approximately 1.6 times higher than Dibrugarh, while the
Pandu-predicted load is 3.3 times higher than the load
predicted for Dibrugarh. This nonlinear relationship between
the increase in sediment load and discharge or shear stress
is a well-established concept in sediment transport studies (as
evident in Engelund and Hansen, 1967). Such non-linearity in the
increase of sediment load with discharge is also observed in
measurements from the Brahmaputra River in Bangladesh.
Furthermore, even when considering the same discharge,
sediment load would proportionally be lower at Dibrugarh
than at Pandu due to the higher grain size at Dibrugarh (D50 =
0.26mm) compared to Pandu (D50 = 0.16 mm). In sediment
transport processes that are size-independent, where sediment
is uniform in size, the load is inversely related to grain size.
Simply put, the larger the median grain size (D50) in well-sorted
uniform sediment, the lower the transport rates (Wilcock and
McArdell, 1993; ASCE Manual of Practice, 2006).

Taking into account the precision of the observed load at
Pandu, it is reasonable to assume that the predicted load at
Dibrugarh, specifically for the coarse fraction (without wash
load or silt), would have fallen within the range of two-fold had
there been measured load data available at Dibrugarh. In the
realm of sediment transport involving non-cohesive sediment,
results within a factor of two are generally regarded as
satisfactory (White et al., 1975; Yang, 1976; ASCE Manual of
Practice, 2006). Model predicted total sediment load and
discharge for short-term (1 year), short-term (2 year),
medium-term (3 year), and long-term (5 year) at (A)

Palasbari-Gumi reach (Palasbari river section), and (B)
Dibrugarh reach (Oakland section) are shown in Figure 7.

Assessment of Erosion and Scours
Palasbari-Gumi Reach
The predictions indicate substantial bed scour, ranging from
approximately 12 to 25m, along the Palasbari bend for the
three flood events (Table 3). In contrast, the scour along the
Gumi bend is comparatively lower, with depths ranging from 4 to
8m. Both short-term (1 year) andmedium-term (3 year) forecasts
do not anticipate significant changes in theGumi anabranch in the
upcoming year, as depicted in Figure 8. Some localized areaswith
high scour values, as projected by the model, are considered non-
representative and likely a result of the coarse-scale bathymetric
data employed. Improvements in these areas can be achieved
with high-resolution bathymetric survey data, particularly along
the edges of deeper channels. Nevertheless, observations
indicate that the Palasbari channel bend experiences siltation
and narrows after the peak flood and sediment load from the
stable channel section at Pandu has passed. This transition is
evident in the bathymetric plots shown in Figure 8A, comparing
conditions at the start of the monsoon (May) to those after the
peak of the hydrograph (Figure 8B).

Dibrugarh Reach
Scour depths in the main anabranches and along the banks are
in the range of 5–6m, which is understandably small in the
model’s predictions. The lowermagnitude of scour depth can be
attributed, in part, to the lower magnitude flood in 2021. It is
important to note that the channel geometry at Dibrugarh differs
considerably from that of Palasbari-Gumi, as Dibrugarh features

TABLE 3 | Sediment load predicted by 2D MIKE21C model of the Brahmaputra River for the Palasbari-Gumi reach.

Predicted maximum bed scour at the Palasbari and Gumi bends Bankfull flood: 3 successive years

Hydrology of 2021 1 in 100 Year

Palasbari Bend Bed Scour (m) 12 18 25
Gumi Reach Bend Bed Scour (m) 4.5 5 8
Discharge (m3/s): Peak Value at Pandu 34,333 66,000 42,500

FIGURE 8 | (A)Main channel planforms based on survey of June 2021, (B) Predicted channel planform under bankfull discharge condition
after the peak flow load and the flow has passed the Palasbari bend.

Earth Science, Systems and Society | The Geological Society of London January 2024 | Volume 4 | Article 1007512

Pareta Erosion Prediction Model for Braided River



a braided and straight channel configuration, while Palasbari-
Gumi consists of a braided system with sharp channel bends
along the banks. Furthermore, the larger grain size at Dibrugarh
contributes to the relatively lower scour development in this
area, especially considering that the sediment load at Dibrugarh
is 3.5 times lower than that in the Palasbari-Gumi reach.
Nevertheless, these morphological forecasts offer valuable
insights into channel morphology along the south bank, which
should be closely monitored in the coming years for effective
bank erosion management.

The forecasted bathymetry for the 5th year (2027) from the
present year is depicted in Figure 9B, while the bathymetry at
the present time (2021) is shown in Figure 9A. Although there
are no surprising developments in the channel after 5 years of
natural processes acting on the present bed, it is worth noting
that a chute channel is expected to form along the south bank
between Easting 686,000 m and Easting 690,000 m, as
indicated by the deep blue channel along the bank. This is
anticipated to increase bank erosion in this specific reach,
covering a length of approximately 3–4 km.

DISCUSSION

Bank Erosion Prediction at Palasbari and
Gumi Reach
Bank erosion predictions for the south bank in the Palasbari
and Gumi reach were conducted, encompassing scenarios for
1 year, 3 year, and 5 year projections. Two primary
development scenarios were taken into consideration: (a)
the existing conditions, where protection is provided by geo-
bags along the Palasbari and Gumi reach, and (b) protection
along the entire Palasbari bend and the existing Gumi training
work. However, it is important to emphasise that effective bank
erosion management in these areas, specifically at Palasbari
and Gumi, necessitates integration with development plans for

the north bank immediately upstream of Palasbari and further
upstream. This is crucial because the development activities
on the north bank can exert a significant influence on erosion
patterns and channel changes downstream.

The erosion predictions were based on bankfull discharge,
which represents a reasonably frequent occurrence with a 1 in
2 year probability. For medium-term forecasts spanning
3–4 years, the 1 year monsoon hydrograph was used as a
basis and multiplied to create the hydrographs for these
extended periods. The areas susceptible to erosion under
bankfull discharge conditions are visually represented in
Figure 10, where eroded banklines are depicted in red lines.
Gaps without erosion indicate the presence of existing
protective measures at the Palasbari and Gumi reach.

The annual erosion rate varies between 10 and 30m, with
certain areas, such as the extended banklines downstream of the
Palasbari bend, experiencing minimal erosion rates of less than
5m annually. In the medium-term scenario, the comprehensive
protection of the entire Palasbari bend encouragesmorphological
development, resulting in the elevation of downstream riverbanks
and the formation of islands within 3 years. However, this might
intensify erosion downstream of Gumi’s bank protections,
necessitating potential extensions. The initial bank erosion rate
stands at 15mper year, reducing to 8m annually by the fifth year.

The north bank near Pandu, although not subject to specific
erosion predictions, is vulnerable due to the presence of swift,
deep channels. Thus, controlling erosion at the Palasbari bend
and regulating downstream channel development are pivotal.
A comprehensive approach that includes extending the model
to Pandu Bridge and assessing the impact of the second bridge
is crucial for long-term predictions.

Bank Erosion Prediction at Dibrugarh Reach
Riverbanks vulnerable to erosion in the study area are shown
in Figure 11. The erosion forecast was made under the
assumption that existing bank protection works in the

FIGURE 9 | (A) River bathymetry prior to water working by the hydrology of 2021, (B) Forecast of morphological development in the 5th year
from 2022 due to water working of the bed by 2021 hydrology.
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region were not considered in the model setup. The primary
objective was to assess the vulnerability of the banks in the
absence of any protection measures and then progressively
quantify the impact of the existing protective works.

A stretch of approximately 15 km along the south bank,
spanning from Naghaghuly to Rohomaria (Easting 692000m to
Easting 712000m, as illustrated in Figure 11), is identified as
susceptible to bank erosion. This area may experience an

FIGURE 10 | Erosion affected reaches along the south bank from Palasbari to Gumi.

FIGURE 11 | Bank erosion forecast for the next 5 years up to 2027 along the south bank at Dibrugarh.
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annual erosion rate in the range of 10–15 m. The total bank
erosion predicted for the next 5 years, resulting from the
gradual effects of an ordinary low-magnitude flood in 2021,
is estimated to be approximately 100 m, as visualized in
Figure 12 (between chainage 20,000 to 36,000 m).

Additionally, there is another development downstream of
Naghaghuly along the south bank, spanning from Easting
685000m–692000m (Figure 11). It is anticipated that a
deep channel may evolve along this bank, a possibility
previously discussed in Figure 9. This area could experience
even more substantial bank erosion than the Naghaghuly
reach, with predictions indicating erosion of up to 120 m
over 5 years (Figure 12).

CONCLUSION

Two-dimensional (2D) morphological models were
meticulously developed to simulate the behaviour of the
Brahmaputra River in the Palasbari-Gumi reach and Dibrugarh
reach. These comprehensive models are designed to address
various critical aspects of river morphology, including bend
scour, confluence scour, obstruction scour, and bank erosion.
To construct the models, advanced techniques such as multi-
block grid generation were employed, and it was built using data
from topographic surveys conducted in 2022 and cross-section
data provided by the Water Resource Department (WRD).

The spatial coverage of these models is extensive,
encompassing a stretch of 57 km with a river width of
approximately 20 km in the Palasbari-Gumi reach, and a river
length of 43 km in the Dibrugarh reach. Calibration of these
models were performed with reference to hydrological
conditions from the year 2021, and rigorous validation were
executed against flow data from June 2022. The model’s
predictive capabilities exhibited remarkable accuracy in several
critical aspects. Notably, the model’s predictions are closely
aligned with measurements from Acoustic Doppler Current

Profilers (ADCP), which are instruments used for measuring
flow velocities in rivers. Peak model velocities showed
deviations of less than 9% from the actual measurements,
indicating the model’s proficiency in predicting flow dynamics.

Furthermore, themodel demonstrated a high level of precision
in estimating design flood levels, achieving an accuracy rate of
91% for the Palasbari-Gumi reach and 95% for theDibrugarh reach
under bankfull discharge conditions. This suggests that themodel
can reliably assess flood levels, which are vital for hydraulic and
morphological analyses. The model’s competence extended to
forecasting yearly sediment load, with predictions closely
matching observed data. These achievements underscore the
model’s effectiveness in capturing the complex dynamics of the
Brahmaputra River, making it a valuable tool for studying and
managing this dynamic and ever-changing natural system.

Palasbari-Gumi reach: The model provides insightful
predictions for various critical parameters. Specifically, it
estimates an annual sediment load of 257 million tons per
year for the coarse sand fraction during 2021, under bankfull
discharge conditions. It is worth noting that historical
observations have reported a higher sediment load of
around 400 million tons per year for the entire Brahmaputra,
indicating that the model’s prediction represents a subset of
the total sediment load in the river. The model further projects
significant hydraulic design variables for the Palasbari and
Gumi areas in 2022. These include average depths of 9.82 m
and 5.87 m, respectively. Over a long-term horizon of a century,
these depths are expected to increase to 11.49 m and 7.35 m
for Palasbari and Gumi, respectively. Similarly, average water
levels for 2022 are anticipated to be 47.73 m for Palasbari and
46.33 m for Gumi, with the potential to rise to 48.83 m and
47.54 m, respectively, by the end of the century.

The model also provides valuable insights into flow velocities,
indicating that average speeds in 2022 are projected to be 1.4m
per second for Palasbari and 0.66m per second for Gumi.
Looking ahead to 2,122, these speeds may increase to 1.77m
per second and 0.73m per second, respectively. This data is

FIGURE 12 | Bank erosion prone reach along south and north banks (forecasted total bank erosion for the next 5 years).
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essential for understanding the dynamic nature of flow within
these reaches. In terms of morphological changes, the model
predicts bed scour depths ranging from 12 to 25m during flood
events along the Palasbari bend. In contrast, the Gumi bend is
expected to experience relatively lower scour depths, typically
falling within the range of 4–8m. This information provides
critical insights into the evolving morphology of the river under
various hydrological scenarios. Furthermore, the model’s short-
term (1 year) and medium-term (3 year) predictions do not
indicate substantial development of the Gumi anabranch in the
near future. These forecasts contribute to our understanding of
the stability and changes in this dynamic river system.

Bank erosion forecasts for the south bank in thePalasbari-Gumi
reach, spanning 1 year, 3 year, and 5 year scenarios, were
conducted. These scenarios considered existing geo-bag
protection at Palasbari and Gumi sites and extended protection
along the entire Palasbari bend while maintaining existing Gumi
work. Annual erosion rates ranged from 10 to 30m, with some
areas experiencing minimal yearly erosion below 5m, primarily
downstream of Palasbari and Gumi sites. Minor embayment
development was observed immediately upstream of each site,
with a maximum of 10m of bank erosion. The protection of the
entire Palasbari bend is expected to enhance morphological
development between Palasbari and Gumi, leading to significant
siltation upstream of Gumi but also causing increased bank
erosion downstream of the Gumi protection works. This study
offers a valuable methodology for planning and executing river
training measures in highly braided rivers like the Brahmaputra by
predicting morphological changes over a 2–3 year period.

Dibrugarh reach: A medium-term morphological prediction
spanning 5 years has been generated to evaluate channel
development and the vulnerability of bank erosion, particularly
along the south bank of the Brahmaputra River. Based on model
predictions and ADCPmeasurements fromJuly 2021, it is evident
that during this relatively ordinary low-magnitude flood event of
2021,maximumvelocities along the south bank could exceed 3m
per second, with even the lowest velocities during the monsoon
staying above the erosion threshold. Consequently, in extreme
flood events like bankfull, 1 in 50 year, and 1 in 100 year events,
the south bank is at risk of erosion.

An approximately 15 km stretch along the south bank,
extending from Naghaghuly to Rohomaria, is identified as
vulnerable to bank erosion, with the potential for annual
erosion rates of 10–15 m. The total forecasted bank erosion
over the next 5 years, resulting from the impact of the
2021 flood, is estimated to be around 100 m. Additionally, a
concerning development is anticipated downstream of
Naghaghuly, covering a 7–8 km stretch along the south
bank. Here, the formation of a deep channel could lead to
up to 120 m of bank erosion in 5 years. This prediction is based
on detailed scientific analysis and modelling.

Future Work
Based on the findings andmethodology presented in this study,
several future actions and research directions can be
considered:

• Model refinement: further refinement and enhancement
of the existing MIKE-21C model can be pursued.
Continuous calibration and validation with new data
and more precise measurements can improve the
model’s accuracy in predicting river behaviour.

• Long-term predictions: extend the predictive capabilities
of the model to forecast morphological changes beyond
the 5 year timescale. Understanding the river’s behaviour
over more extended periods can aid in long-term planning
for river management and protection.

• Climate change impact: investigate the potential impact
of climate change on the Brahmaputra River. Changing
weather patterns, altered monsoon seasons, and glacier
melt can significantly influence river discharge and
sediment loads, which should be factored into future
predictions.

• Erosion mitigation strategies: develop and evaluate erosion
mitigation strategies based on the model’s predictions. This
could involve the strategic placement of protective
measures, eco-friendly bank stabilisation techniques, or
land use planning to minimise erosion’s impact.

• Transboundary collaboration: since the Brahmaputra
River flows through multiple countries, collaboration
with neighbouring nations on data sharing, research,
and joint management strategies is essential to
address common challenges and opportunities.

• Emergency response planning: develop emergency
response plans for extreme flood events, considering
the vulnerability of the south bank to erosion. These
plans can help in disaster preparedness and response.
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